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Paramagnetic anisotropy and spin-flop transition in single crystals of the quasi-one-dimensional
system [-Cu,V,0,
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Magnetic behaviors of B-Cu,V,0; single crystals are investigated by means of magnetic susceptibility,
magnetization, and heat capacity measurements. Our experimental results show that 3-Cu,V,05 is a quasi-
one-dimensional antiferromagnet with Néel temperature of ~26 K. The intrachain and interchain exchanges
are estimated to be J;=39 K and J, =13.8 K, respectively. Also, paramagnetic anisotropy is observed in the
system, while a typical spin-flop transition is observed with magnetic field applied along the ¢ axis. Magnetic
anisotropy energy at 5 K is estimated to be K=6.05(5) X 10° ergs/cm?. Spins of Cu®* ions are suggested to
arrange parallel to the ¢ axis and perpendicular to the chains.
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One-dimensional (1D) spin systems have been one of the
most active fields in condensed matter physics due to the
discovery of their various interesting magnetic behaviors.
Compounds with a linear chain structure have attracted much
attention, however, current interests on 1D spin systems are
mainly focused on copper- and vanadium-based oxides con-
taining Cu®* ions (3d”) or V* ions (3d'). For example,
many copper oxides, such as CuGeOs;' BaCuSi,Og,>
SrCu2O3,3 and BaCu2V208,4 and vanadium oxides, such as
(VO),P,0; (Ref. 5) and NaV,05 (Ref. 6), are characterized
to be a spin singlet ground state with a finite spin gap due to
their strong quantum spin fluctuation, while LiCuVO,,’
BaCu,Si,0,,2 CuSiO;,” and Sr,V;04 (Ref. 10) are found to
undergo a three-dimensional magnetic ordering at low tem-
perature due to weak interchain interactions. Such different
magnetic ground states related to spin and charge correla-
tions in copper- or vanadium-based oxides provide a rich
physics.

Cu,V,0,, one of the copper-vanadium-based oxides, is
composed of magnetic Cu®** (3d°,5=1/2) ions and nonmag-
netic tetrahedral VO, (3d°,5=0). As shown in Fig. 1(a),
one of the most remarkable structural features is that all
Cu?* ions are equivalent with the arrays of edge-shared
CuOs polyhedra forming linear chains, and the linear
chains are not parallel to the same direction but extend
in two approximately perpendicular directions, showing
a cross-linking chain framework.!"'> Cu,V,0; was found
to have two different phases of high-temperature form
(B form) and low-temperature form (« form): B form!!
crystallizes in monoclinic system of space group C2/c
with a=7.685(5) A, b=8.007(3) A, ¢=10.29(2) A, and B
=110.27(5)°, while a form!? crystallizes in orthorhombic
system of space group Fdd2 with a=20.645(2) A, b
=8.383(7) A, and ¢=6.442(1) A.

Due to their peculiar linear chain structures, magnetic be-
haviors of a- and B-Cu,V,0,; have been investigated by
many researchers on polycrystalline samples.'3!> Ponomar-
enko et al.'® reported that a-Cu,V,05 is an antiferromagnet
with weak ferromagnetism. A spontaneous magnetization
was observed below T-=35 K with a small saturation mag-
netization of 0.04up, which was suggested to arise from the
canting of spins due to the Dzyaloshinsky-Moriya (DM) in-
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teraction. Pommer et al.'* investigated the structural and
magnetic properties of Cu,_,Zn V,0; and suggested that the
substitution of Zn for Cu in Cu,V,0; can induce a structural
transition from the a form with y<<0.15 to the 8 form with
y=0.15, leading to a change in magnetic properties from a
canted antiferromagnet to an antiferromagnet, due to absence
of intrachain DM interaction. The results show that
B-Cu,V,0;5 is likely an antiferromagnet with Néel tempera-
ture (Ty) of ~26 K. However, Touaiher et al.'> recently
pointed out that the fit for the experimental magnetic suscep-
tibility of 3-Cu,V,0; by the dimeric model is more suitable
than that by the Bonner-Fisher model. Further, no \-like fea-
ture was observed in heat capacity data at the temperature
range of 1.6—40 K. These results indicate that 8-Cu,V,05 is
likely a Heisenberg antiferromagnet with a spin singlet
ground state.

Besides the a and B forms, Cu,V,0,; was found to
have the third phase of vy form,'® which crystallizes in
triclinic system of space group PI with a=5.0873(1) A,
b=5.8233(1) A, ¢=9.4020(1) A, «@=99.780(3)°, B
=97.253(3)°, and y=97.202(3)°. It was also found that «
form is only stable phase at ambient conditions, whereas
both B and 7y forms are metastable.'® Therefore, the quality
of Cu,V,0; polycrystalline samples obtained by different
synthesis methods should strongly affect their magnetic
properties. Different magnetic properties of -Cu,V,0; in-
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FIG. 1. (a) The cross-linking chain structure of 3-Cu,V,05: the

chains built by Cu®* ions are parallel to the [110] and [110] direc-
tions. (b) Spins of Cu?* ions arranged parallel to the ¢ axis and
perpendicular to the chains.

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.77.052402

BRIEF REPORTS

[N

N

V4 (10'3emu/mol)
W
(nula/loulz()[) [_Z

(S
T
1
(S

0nnnnInnnnlnnnnlnnnnlnnnnlnnnn0

0 50 100 150 200 250 300
T (K)

FIG. 2. (Color online) Temperature dependence of magnetic

susceptibility and reciprocal one for B-Cu,V,0; measured at an

applied field of 1 T along the b axis. The thin solid line is a fit to the
Curie-Weiss law and the thick one is the Bonner-Fisher fit (Ref. 21).

vestigated by Pommer et al.'* and Touaiher et al.'> lead us to
further reinvestigate magnetic ground state of 8-Cu,V,05. In
this study, we report magnetic behaviors of B-Cu,V,0,
single crystals investigated by means of magnetic and heat
capacity measurements. Our results suggest that 53-Cu,V,0,
is a 1D spin-1/2 anisotropic Heisenberg antiferromagnet
with Ty=~26 K. Also, paramagnetic anisotropy is observed
even at room temperature, and spin-flop transition is ob-
served in magnetic field applied along the ¢ axis.

B-Cu,V,05 single crystals were grown by flux method in
an electric furnace. A mixture of the starting materials with
high purity reagents of CuO (4N,11g), V,05 (4N,24.7g),
and SrCO; (4N, 10g) was ground carefully and homogenized
thoroughly with ethanol (99%) in an agate mortar and then
was packed into an alumina crucible capped with a cover
using Al,O5 cement (C-989, Cotronics Corp.). Such closed
crucible was set into the furnace. The furnace was cooled
slowly down to 750 °C and then cooled rapidly from
750 to 600 °C. The detailed growth process was described
in Ref. 17. Magnetic susceptibility and magnetization were
measured using a superconducting quantum interference de-
vice (MPMS-5S, Quantum Design) magnetometer, and heat
capacity was measured by a relaxation method using a com-
mercial physical property measurement system (Quantum
Design).

Figure 2 shows the temperature dependence of magnetic
susceptibility and the reciprocal one for B-Cu,V,0; mea-
sured along the b axis. The susceptibility exhibits a broad
maximum at around 7',=50 K, indicative of 1D short-range
ordering (SRO). The susceptibility decreases with decreasing
temperature, while a Curie-like upturn is seen below ~26 K.
Above 100 K, the susceptibility follows well the Curie-
Weiss law, giving Curie constant C=0.75(3) emu K/mol and
Weiss temperature §=-81.5(7) K. The effective moment is
calculated to be 1.73(5) up, which is in good agreement with
the value of w=1.73u, expected theoretically for free Cu>*
ions (§=1/2) with g=2. The negative Weiss temperature in-
dicates an antiferromagnetic (AF) coupling between Cu?*
ions.

Figure 3 shows magnetic susceptibilities measured along
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FIG. 3. (Color online) Magnetic susceptibilities measured along
the a, b, and ¢ axes.

the a, b, and ¢ axes. Similar to Hllb, a Curie-like upturn in
susceptibility is also seen below ~26 K for Hlla, while a
rapid drop is seen at ~26 K for Hllc, suggesting that the ¢
axis is magnetic easy axis and AF ordering occurs likely at
~26 K. Further, a large diversity of susceptibilities between
Hlla and HIlb or Hllc, which persists up to room tempera-
ture, indicates an intriguing paramagnetic anisotropy in the
system. This is in good agreement with electron spin reso-
nance (ESR) measurement on B phase of Zn-substituted
Cu,V,0; polycrystalline sample, showing a strong ESR sig-
nal above Ty.'* According to structural analysis,'® a large
Jahn-Teller distortion of Cu®* ions in 8-Cu,V,0; is found to
run along the a axis, leading to an elongated square-
pyramidal CuOs. We suggest that such paramagnetic aniso-
tropy in 8-Cu,V,0; may be due to different Van-Vleck con-
tributions affected by the Jahn-Teller distortion. Similar
paramagnetic anisotropy can also be seen in 1D spin chain
system LiCuVO,."”

Figure 4 shows heat capacity data in applied field
H=0. Apparently, there is a clear sign of \-like feature
around 26 K with a specific heat jump of AC
=~2.02(4) Jmol™' K™, giving clear evidence for a long-
range AF ordering. As shown in the inset of Fig. 4, the
C/T vs T* plot below 25 K decreases linearly toward 0
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FIG. 4. (Color online) Heat capacity data measured in applied
field of H=0. The inset shows C/T vs T? plot. The solid line is the
fit of BT for heat capacity data below 25 K.
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FIG. 5. (Color online) Magnetization as a function of applied
field at 5 K.

with decreasing temperature, showing that the heat capacity
C follows a T° power law with a coefficient B of
~1.1(2) mJ mol~" K™*. It is noted that the value of 3 cannot
be used to estimate the Debey temperature since both phonon
and magnetic contributions give 7° terms into total heat ca-
pacity at low temperature of 7< Ty.?° For a Heisenberg lin-
ear chain system at higher temperature of 7> Ty, the heat
capacity from magnetic contribution can be estimated
theoretically as C,(7)=~0.35R (~29Jmol"'K™') at T
=0.75T,,;.>' We note that the experimental value of the heat
capacity at T7=0.75T,, (~37.5K) for B-Cu,V,0; is
~29.8 I mol™! K~!, which is about ten times as large as the
theoretical value of ~2.9 J mol~' K~!. This suggests that the
heat capacity of 5-Cu,V,0; is dominated by photon contri-
bution above Ty.

Figure 5 shows magnetization (M) as a function of ap-
plied field (H) at T=5 K. A linear increase in magnetization
is observed in Hlla and HIb, agreeing with AF ordering
below 26 K, while a rapid increase is observed at H=
~ 1.5 T along the ¢ axis, showing a typical spin-flop transi-
tion. This is consistent with the susceptibility data, clearly
showing that the ¢ axis is magnetic easy axis and 3-Cu,V,0,
exhibits magnetic anisotropy below Ty. Therefore, the spins
of Cu?* ions are suggested to arrange collinearly parallel to
the ¢ axis and perpendicular to the chains, as shown in Fig.
1(b). We note that such spin arrangement in 8-Cu,V,05 is in
agreement with the cross-linking chain structural feature on
the a-b plane, showing no canted spins between Cu?* ions in
the system.

The combined results from magnetic and heat capacity
data clearly show that 8-Cu,V,05 is a 1D spin-1/2 aniso-
tropic Heisenberg antiferromagnet with Ty=~26 K and the
magnetic behaviors are related closely to its peculiar struc-
tural features. It is well known that an ideal 1D spin chain
system does not show long-range ordering (LRO) above T
=0 K due to strong quantum spin fluctuation,”> however, al-
most all quasi-one-dimensional spin systems display LRO at
their ground states due to interchain interaction (J,). We
note that the temperature of SRO (T,,=~50 K) is about
twice as large as that of LRO (Ty=~26 K), indicating that
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the significant interchain interactions and anisotropic spin-
spin interactions in [3-Cu,V,0; drive the system into AF
ordered ground state.

We now estimate the magnitude of interchain interaction
and magnetic anisotropy in -Cu,V,0,. For 1D spin-1/2
Heisenberg antiferromagnetic chain system, Bonner and
Fisher (BF)?' have suggested that board maximum of the
susceptibility (x,,) at Ty, is related to the intrachain exchange
Ji: xu=0.0735Ng?uz/J, and Ty,=1.282J/kg. As shown in
Fig. 2, the fitting of experimental susceptibility by BF curve,
with temperature-independent y,=2.0(3) X 10™* emu/mol,
g=2.4(4), and T,,=50 K, gives J;=39 K. Therefore, the
interchain interaction J, can be estimated using the mean-
field approximation:>® J, =Ty/1.28[In(5.8J,/Ty)]"?. With
Jy=39 K and Ty=26 K, we obtain J, =~ 13.8 K. We note
that the ratio of J,/J; in B-Cu,V,0; (~0.354) is much
larger than that in LiCuVO, (~0.045) (Ref. 7) or
BaCu,Si,07 (~0.011),% indicating a less pronounced 1D
character in the system.

On the other hand, the magnitude of magnetic anisotropy
in B-Cu,V,05 can also be estimated using a simple uniaxial
two-sublattice mean-field model.?* In general, when an ex-
ternal field is applied along the magnetic easy axis of an
antiferromagnet, the spin moments tend to flip toward direc-
tions perpendicular to the field to gain a magnetic energy of
0.5(x | —x)H?. If the magnetic anisotropy is not significant,
the spin-flop transition appears at a critical field Hgg and the
gain of magnetic energy overcompensates the anisotropy en-
ergy loss due to deviation of spin moments from the pre-
ferred spin orientation. Therefore, the anisotropy energy K,
which is usually used to evaluate the magnitude of magnetic
anisotropy, can be estimated by the equation K(7T)
=0.5(Hsp)*[x | —x]» where Hgp is the spin-flop transition
field and y, and x; the perpendicular and parallel suscepti-
bilities, respectively.?> Using the experimental values of y,
=6.61(4) X 1073 emu/mol, Xie=1.23(1) X 10~ emu/mol,
and Hqr=1.5 T obtained in Figs. 2 and 4, respectively, we
obtain K (5 K)=6.05(5) X 10° ergs/cm?.

In summary, we have investigated magnetic behaviors of
B-Cu,V,05 single crystals by means of magnetic suscepti-
bility, magnetization, and heat capacity measurements. Our
results showed that 3-Cu,V,0- is a 1D spin-1/2 anisotropic
Heisenberg antiferromagnet with Néel temperature of
~26 K. Also, paramagnetic anisotropy was observed in the
system, while a typical spin-flop transition was observed in a
magnetic field of 1.5 T applied along the ¢ axis. The spins of
Cu?* ions are suggested to arrange parallel to the ¢ axis and
perpendicular to the chains. The intrachain and interchain
exchanges are estimated to be 39 and 13.8 K, respectively.
Magnetic anisotropy energy at 5 K is estimated to have
6.05(5) X 10° ergs/cm?.
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