Paramagnetic anisotropy and spin-flop transition in single crystals of the quasi-one-dimensional system β -Cu₂V₂O₇

Zhangzhen He* and Yutaka Ueda

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

(Received 6 September 2007; revised manuscript received 7 December 2007; published 5 February 2008)

Magnetic behaviors of β -Cu₂V₂O₇ single crystals are investigated by means of magnetic susceptibility, magnetization, and heat capacity measurements. Our experimental results show that β -Cu₂V₂O₇ is a quasione-dimensional antiferromagnet with Néel temperature of ~26 K. The intrachain and interchain exchanges are estimated to be J_{\parallel} =39 K and J_{\perp} =13.8 K, respectively. Also, paramagnetic anisotropy is observed in the system, while a typical spin-flop transition is observed with magnetic field applied along the *c* axis. Magnetic anisotropy energy at 5 K is estimated to be K=6.05(5)×10⁵ ergs/cm³. Spins of Cu²⁺ ions are suggested to arrange parallel to the *c* axis and perpendicular to the chains.

DOI: 10.1103/PhysRevB.77.052402

PACS number(s): 75.50.-y, 75.30.Gw, 75.30.-m

One-dimensional (1D) spin systems have been one of the most active fields in condensed matter physics due to the discovery of their various interesting magnetic behaviors. Compounds with a linear chain structure have attracted much attention, however, current interests on 1D spin systems are mainly focused on copper- and vanadium-based oxides containing Cu²⁺ ions $(3d^9)$ or V⁴⁺ ions $(3d^1)$. For example, many copper oxides, such as CuGeO₃,¹ BaCuSi₂O₆,² $SrCu_2O_3$,³ and $BaCu_2V_2O_8$,⁴ and vanadium oxides, such as $(VO)_2P_2O_7$ (Ref. 5) and NaV_2O_5 (Ref. 6), are characterized to be a spin singlet ground state with a finite spin gap due to their strong quantum spin fluctuation, while LiCuVO₄, $BaCu_2Si_2O_7^{,8}$ CuSiO₃,⁹ and $Sr_2V_3O_9$ (Ref. 10) are found to undergo a three-dimensional magnetic ordering at low temperature due to weak interchain interactions. Such different magnetic ground states related to spin and charge correlations in copper- or vanadium-based oxides provide a rich physics.

 $Cu_2V_2O_7$, one of the copper-vanadium-based oxides, is composed of magnetic Cu²⁺ $(3d^9, S=1/2)$ ions and nonmagnetic tetrahedral VO₄ ($3d^0$, S=0). As shown in Fig. 1(a), one of the most remarkable structural features is that all Cu²⁺ ions are equivalent with the arrays of edge-shared CuO₅ polyhedra forming linear chains, and the linear chains are not parallel to the same direction but extend in two approximately perpendicular directions, showing a cross-linking chain framework.^{11,12} Cu₂V₂O₇ was found to have two different phases of high-temperature form (β form) and low-temperature form (α form): β form¹¹ crystallizes in monoclinic system of space group C2/cwith a = 7.685(5) Å, b = 8.007(3) Å, c = 10.29(2) Å, and β =110.27(5)°, while α form¹² crystallizes in orthorhombic system of space group Fdd2 with a=20.645(2) Å, b =8.383(7) Å, and c=6.442(1) Å.

Due to their peculiar linear chain structures, magnetic behaviors of α - and β -Cu₂V₂O₇ have been investigated by many researchers on polycrystalline samples.^{13–15} Ponomarenko *et al.*¹³ reported that α -Cu₂V₂O₇ is an antiferromagnet with weak ferromagnetism. A spontaneous magnetization was observed below T_C =35 K with a small saturation magnetization of 0.04 μ_B , which was suggested to arise from the canting of spins due to the Dzyaloshinsky-Moriya (DM) in-

teraction. Pommer et al.14 investigated the structural and magnetic properties of $Cu_{2-\nu}Zn_{\nu}V_{2}O_{7}$ and suggested that the substitution of Zn for Cu in $Cu_2V_2O_7$ can induce a structural transition from the α form with y < 0.15 to the β form with $y \ge 0.15$, leading to a change in magnetic properties from a canted antiferromagnet to an antiferromagnet, due to absence of intrachain DM interaction. The results show that β -Cu₂V₂O₇ is likely an antiferromagnet with Néel temperature (T_N) of ~26 K. However, Touaiher *et al.*¹⁵ recently pointed out that the fit for the experimental magnetic susceptibility of β -Cu₂V₂O₇ by the dimeric model is more suitable than that by the Bonner-Fisher model. Further, no λ -like feature was observed in heat capacity data at the temperature range of 1.6–40 K. These results indicate that β -Cu₂V₂O₇ is likely a Heisenberg antiferromagnet with a spin singlet ground state.

Besides the α and β forms, Cu₂V₂O₇ was found to have the third phase of γ form,¹⁶ which crystallizes in triclinic system of space group $P\overline{1}$ with a=5.0873(1) Å, b=5.8233(1) Å, c=9.4020(1) Å, $\alpha=99.780(3)^{\circ}$, β =97.253(3)°, and $\gamma=97.202(3)^{\circ}$. It was also found that α form is only stable phase at ambient conditions, whereas both β and γ forms are metastable.¹⁶ Therefore, the quality of Cu₂V₂O₇ polycrystalline samples obtained by different synthesis methods should strongly affect their magnetic properties. Different magnetic properties of β -Cu₂V₂O₇ in-

FIG. 1. (a) The cross-linking chain structure of β -Cu₂V₂O₇: the chains built by Cu²⁺ ions are parallel to the [110] and [$\overline{1}10$] directions. (b) Spins of Cu²⁺ ions arranged parallel to the *c* axis and perpendicular to the chains.

FIG. 2. (Color online) Temperature dependence of magnetic susceptibility and reciprocal one for β -Cu₂V₂O₇ measured at an applied field of 1 T along the *b* axis. The thin solid line is a fit to the Curie-Weiss law and the thick one is the Bonner-Fisher fit (Ref. 21).

vestigated by Pommer *et al.*¹⁴ and Touaiher *et al.*¹⁵ lead us to further reinvestigate magnetic ground state of β -Cu₂V₂O₇. In this study, we report magnetic behaviors of β -Cu₂V₂O₇ single crystals investigated by means of magnetic and heat capacity measurements. Our results suggest that β -Cu₂V₂O₇ is a 1D spin-1/2 anisotropic Heisenberg antiferromagnet with $T_N = \sim 26$ K. Also, paramagnetic anisotropy is observed even at room temperature, and spin-flop transition is observed in magnetic field applied along the *c* axis.

 β -Cu₂V₂O₇ single crystals were grown by flux method in an electric furnace. A mixture of the starting materials with high purity reagents of CuO (4N,11g), V₂O₅ (4N,24.7g), and $SrCO_3$ (4N, 10g) was ground carefully and homogenized thoroughly with ethanol (99%) in an agate mortar and then was packed into an alumina crucible capped with a cover using Al₂O₃ cement (C-989, Cotronics Corp.). Such closed crucible was set into the furnace. The furnace was cooled slowly down to 750 °C and then cooled rapidly from 750 to 600 °C. The detailed growth process was described in Ref. 17. Magnetic susceptibility and magnetization were measured using a superconducting quantum interference device (MPMS-5S, Quantum Design) magnetometer, and heat capacity was measured by a relaxation method using a commercial physical property measurement system (Quantum Design).

Figure 2 shows the temperature dependence of magnetic susceptibility and the reciprocal one for β -Cu₂V₂O₇ measured along the *b* axis. The susceptibility exhibits a broad maximum at around T_M =50 K, indicative of 1D short-range ordering (SRO). The susceptibility decreases with decreasing temperature, while a Curie-like upturn is seen below ~26 K. Above 100 K, the susceptibility follows well the Curie-Weiss law, giving Curie constant *C*=0.75(3) emu K/mol and Weiss temperature θ =-81.5(7) K. The effective moment is calculated to be 1.73(5) μ_B , which is in good agreement with the value of μ =1.73 μ_B expected theoretically for free Cu²⁺ ions (*S*=1/2) with *g*=2. The negative Weiss temperature indicates an antiferromagnetic (AF) coupling between Cu²⁺ ions.

Figure 3 shows magnetic susceptibilities measured along

FIG. 3. (Color online) Magnetic susceptibilities measured along the a, b, and c axes.

the a, b, and c axes. Similar to $H \parallel b$, a Curie-like upturn in susceptibility is also seen below ~ 26 K for $H \parallel a$, while a rapid drop is seen at ~ 26 K for $H \parallel c$, suggesting that the c axis is magnetic easy axis and AF ordering occurs likely at \sim 26 K. Further, a large diversity of susceptibilities between $H \parallel a$ and $H \parallel b$ or $H \parallel c$, which persists up to room temperature, indicates an intriguing paramagnetic anisotropy in the system. This is in good agreement with electron spin resonance (ESR) measurement on β phase of Zn-substituted Cu₂V₂O₇ polycrystalline sample, showing a strong ESR signal above T_N ¹⁴ According to structural analysis,¹⁸ a large Jahn-Teller distortion of Cu^{2+} ions in β -Cu₂V₂O₇ is found to run along the *a* axis, leading to an elongated squarepyramidal CuO₅. We suggest that such paramagnetic anisotropy in β -Cu₂V₂O₇ may be due to different Van-Vleck contributions affected by the Jahn-Teller distortion. Similar paramagnetic anisotropy can also be seen in 1D spin chain system LiCuVO₄.¹⁹

Figure 4 shows heat capacity data in applied field H=0. Apparently, there is a clear sign of λ -like feature around 26 K with a specific heat jump of $\Delta C = \sim 2.02(4)$ J mol⁻¹ K⁻¹, giving clear evidence for a long-range AF ordering. As shown in the inset of Fig. 4, the C/T vs T^2 plot below 25 K decreases linearly toward 0

FIG. 4. (Color online) Heat capacity data measured in applied field of H=0. The inset shows C/T vs T^2 plot. The solid line is the fit of βT^3 for heat capacity data below 25 K.

FIG. 5. (Color online) Magnetization as a function of applied field at 5 K.

with decreasing temperature, showing that the heat capacity C follows a T^3 power law with a coefficient β of $\sim 1.1(2)$ mJ mol⁻¹ K⁻⁴. It is noted that the value of β cannot be used to estimate the Debey temperature since both phonon and magnetic contributions give T^3 terms into total heat capacity at low temperature of $T < T_N$.²⁰ For a Heisenberg linear chain system at higher temperature of $T > T_N$, the heat capacity from magnetic contribution can be estimated theoretically as $C_m(T) \approx 0.35R$ (~ 2.9 J mol⁻¹ K⁻¹) at $T = 0.75T_M$.²¹ We note that the experimental value of the heat capacity at $T=0.75T_M$ (~ 37.5 K) for β -Cu₂V₂O₇ is ~ 29.8 J mol⁻¹ K⁻¹, which is about ten times as large as the theoretical value of ~ 2.9 J mol⁻¹ K⁻¹. This suggests that the heat capacity of β -Cu₂V₂O₇ is dominated by photon contribution above T_N .

Figure 5 shows magnetization (*M*) as a function of applied field (*H*) at T=5 K. A linear increase in magnetization is observed in H||a and H||b, agreeing with AF ordering below 26 K, while a rapid increase is observed at $H= \sim 1.5$ T along the *c* axis, showing a typical spin-flop transition. This is consistent with the susceptibility data, clearly showing that the *c* axis is magnetic easy axis and β -Cu₂V₂O₇ exhibits magnetic anisotropy below T_N . Therefore, the spins of Cu²⁺ ions are suggested to arrange collinearly parallel to the *c* axis and perpendicular to the chains, as shown in Fig. 1(b). We note that such spin arrangement in β -Cu₂V₂O₇ is in agreement with the cross-linking chain structural feature on the *a-b* plane, showing no canted spins between Cu²⁺ ions in the system.

The combined results from magnetic and heat capacity data clearly show that β -Cu₂V₂O₇ is a 1D spin-1/2 anisotropic Heisenberg antiferromagnet with $T_N = \sim 26$ K and the magnetic behaviors are related closely to its peculiar structural features. It is well known that an ideal 1D spin chain system does not show long-range ordering (LRO) above T = 0 K due to strong quantum spin fluctuation,²² however, almost all quasi-one-dimensional spin systems display LRO at their ground states due to interchain interaction (J_{\perp}). We note that the temperature of SRO ($T_M = \sim 50$ K) is about twice as large as that of LRO ($T_N = \sim 26$ K), indicating that

the significant interchain interactions and anisotropic spinspin interactions in β -Cu₂V₂O₇ drive the system into AF ordered ground state.

We now estimate the magnitude of interchain interaction and magnetic anisotropy in β -Cu₂V₂O₇. For 1D spin-1/2 Heisenberg antiferromagnetic chain system, Bonner and Fisher (BF)²¹ have suggested that board maximum of the susceptibility (χ_M) at T_M is related to the intrachain exchange J_{\parallel} : $\chi_M = 0.0735Ng^2 \mu_B^2/J_{\parallel}$ and $T_M = 1.282J_{\parallel}/k_B$. As shown in Fig. 2, the fitting of experimental susceptibility by BF curve, with temperature-independent $\chi_0 = 2.0(3) \times 10^{-4}$ emu/mol, g = 2.4(4), and $T_M = 50$ K, gives $J_{\parallel} = 39$ K. Therefore, the interchain interaction J_{\perp} can be estimated using the meanfield approximation:²³ $J_{\perp} = T_N/1.28[\ln(5.8J_{\parallel}/T_N)]^{1/2}$. With $J_{\parallel} = 39$ K and $T_N = 26$ K, we obtain $J_{\perp} = \sim 13.8$ K. We note that the ratio of J_{\perp}/J_{\parallel} in β -Cu₂V₂O₇ (~0.354) is much larger than that in LiCuVO₄ (~0.045) (Ref. 7) or BaCu₂Si₂O7 (~0.011),⁸ indicating a less pronounced 1D character in the system.

On the other hand, the magnitude of magnetic anisotropy in β -Cu₂V₂O₇ can also be estimated using a simple uniaxial two-sublattice mean-field model.²⁴ In general, when an external field is applied along the magnetic easy axis of an antiferromagnet, the spin moments tend to flip toward directions perpendicular to the field to gain a magnetic energy of $0.5(\chi_{\perp}-\chi_{\parallel})H^2$. If the magnetic anisotropy is not significant, the spin-flop transition appears at a critical field $H_{\rm SF}$ and the gain of magnetic energy overcompensates the anisotropy energy loss due to deviation of spin moments from the preferred spin orientation. Therefore, the anisotropy energy K, which is usually used to evaluate the magnitude of magnetic anisotropy, can be estimated by the equation K(T)=0.5 $(H_{\rm SF})^2[\chi_{\perp}-\chi_{\parallel}]$, where $H_{\rm SF}$ is the spin-flop transition field and χ_{\perp} and χ_{\parallel} the perpendicular and parallel susceptibilities, respectively.²⁵ Using the experimental values of $\chi_{\parallel a}$ $=6.61(4) \times 10^{-3}$ emu/mol, $\chi_{\parallel c} = 1.23(1) \times 10^{-3} \text{ emu/mol},$ and H_{SF} =1.5 T obtained in Figs. 2 and 4, respectively, we obtain K (5 K)= $6.05(5) \times 10^5$ ergs/cm³.

In summary, we have investigated magnetic behaviors of β -Cu₂V₂O₇ single crystals by means of magnetic susceptibility, magnetization, and heat capacity measurements. Our results showed that β -Cu₂V₂O₇ is a 1D spin-1/2 anisotropic Heisenberg antiferromagnet with Néel temperature of ~26 K. Also, paramagnetic anisotropy was observed in the system, while a typical spin-flop transition was observed in a magnetic field of 1.5 T applied along the *c* axis. The spins of Cu²⁺ ions are suggested to arrange parallel to the *c* axis and perpendicular to the chains. The intrachain and interchain exchanges are estimated to be 39 and 13.8 K, respectively. Magnetic anisotropy energy at 5 K is estimated to have $6.05(5) \times 10^5 \text{ ergs/cm}^3$.

The authors thank H. Ueda for valuable discussions and J. Yamaura for determination of the orientations of crystal surfaces. One of the authors (Z.H.) acknowledges financial support from the Japan Society for the Promotion of Science (JSPS).

- *Corresponding author. he@issp.u-tokyo.ac.jp
- ¹M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. **70**, 3651 (1993).
- ²Y. Sasago, K. Uchinokura, A. Zheludev, and G. Shirane, Phys. Rev. B 55, 8357 (1997).
- ³M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka, Phys. Rev. Lett. **73**, 3463 (1994).
- ⁴Z. He, T. Kyomen, and M. Itoh, Phys. Rev. B **69**, 220407(R) (2004).
- ⁵T. Barnes and J. Riera, Phys. Rev. B 50, 6817 (1994).
- ⁶M. Isobe and Y. Ueda, J. Phys. Soc. Jpn. **65**, 1178 (1996).
- ⁷A. N. Vasil'ev, L. A. Ponomarenko, H. Manaka, I. Yamada, M. Isobe, and Y. Ueda, Phys. Rev. B **64**, 024419 (2001).
- ⁸I. Tsukada, Y. Sasago, K. Uchinokura, A. Zheludev, S. Maslov, G. Shirane, K. Kakurai, and E. Ressouche, Phys. Rev. B **60**, 6601 (1999).
- ⁹M. Baenitz, C. Geibel, M. Dischner, G. Sparn, F. Steglich, H. H. Otto, M. Meibohm, and A. A. Gippius, Phys. Rev. B **62**, 12201 (2000).
- ¹⁰E. E. Kaul, H. Rosner, V. Yushankhai, J. Sichelschmidt, R. V. Shpanchenko, and C. Geibel, Phys. Rev. B 67, 174417 (2003).
- ¹¹D. Mercurio-Lavaud and B. Frit, C. R. Seances Acad. Sci., Ser. C 277, 1101 (1973).

- ¹²C. Calvo and R. Faggiani, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. **31**, 603 (1975).
- ¹³L. A. Ponomarenko, A. N. Vasil'ev, E. V. Antipov, and Y. A. Velikodny, Physica B **284-288**, 1459 (2000).
- ¹⁴J. Pommer, V. Kataev, K. Y. Choi, P. Lemmens, A. Ionescu, Y. Pashkevich, A. Freimuth, and G. Guntherodt, Phys. Rev. B 67, 214410 (2003).
- ¹⁵M. Touaiher, K. Rissouli, K. Benkhouja, M. Taibi, J. Aride, A. Boukhari, and B. Heulin, Mater. Chem. Phys. 85, 41 (2004).
- ¹⁶S. V. Krivovichev, S. K. Filaov, P. N. Cherepansky, T. Armbruster, O. Y. Pankratova, Can. Mineral. **43**, 671 (2005).
- ¹⁷Z. He and Y. Ueda (unpublished).
- ¹⁸ M. Schindler and F. C. Hawthorne, J. Solid State Chem. **146**, 271 (1999).
- ¹⁹N. Büttgen, H.-A. Krug von Nidda, L. E. Svistov, L. A. Prozorova, A. Prokofiev, and W. Aszmus, Phys. Rev. B **76**, 014440 (2007).
- ²⁰R. Kubo, Phys. Rev. **87**, 568 (1952).
- ²¹J. C. Bonner and M. E. Fisher, Phys. Rev. **135**, A640 (1964).
- ²²N. D. Mermin and H. Wagner, Phys. Rev. Lett. **17**, 1133 (1966).
- ²³H. J. Schulz, Phys. Rev. Lett. **77**, 2790 (1996).
- ²⁴L. J. de Jongh and A. R. Miedema, Adv. Phys. 23, 1 (1974).
- ²⁵K. Yosida, Prog. Theor. Phys. 6, 691 (1951).